We have demonstrated the use of ab initiomolecular dynamics (AIMD) trajectories to compute the vibrational energy levels of molecular systems in the context of the semiclassical initial value representation (SC-IVR). A relatively low level of electronic structuretheory (HF/3-21G) was used in this proof-of-principle study. Formaldehyde was used as a test case for the determination of accurate excited vibrational states. The AIMD-SC-IVR vibrational energies have been compared to those from curvilinear and rectilinear vibrational self-consistent field/vibrational configuration interaction with perturbation selected interactions-second-order perturbation theory (VSCF/VCIPSI-PT2) and correlation-corrected vibrational self-consistent field (cc-VSCF) methods. The survival amplitudes were obtained from selecting different reference wavefunctionsusing only a single set of molecular dynamicstrajectories. We conclude that our approach is a further step in making the SC-IVR method a practical tool for first-principles quantum dynamics simulations.